1/2

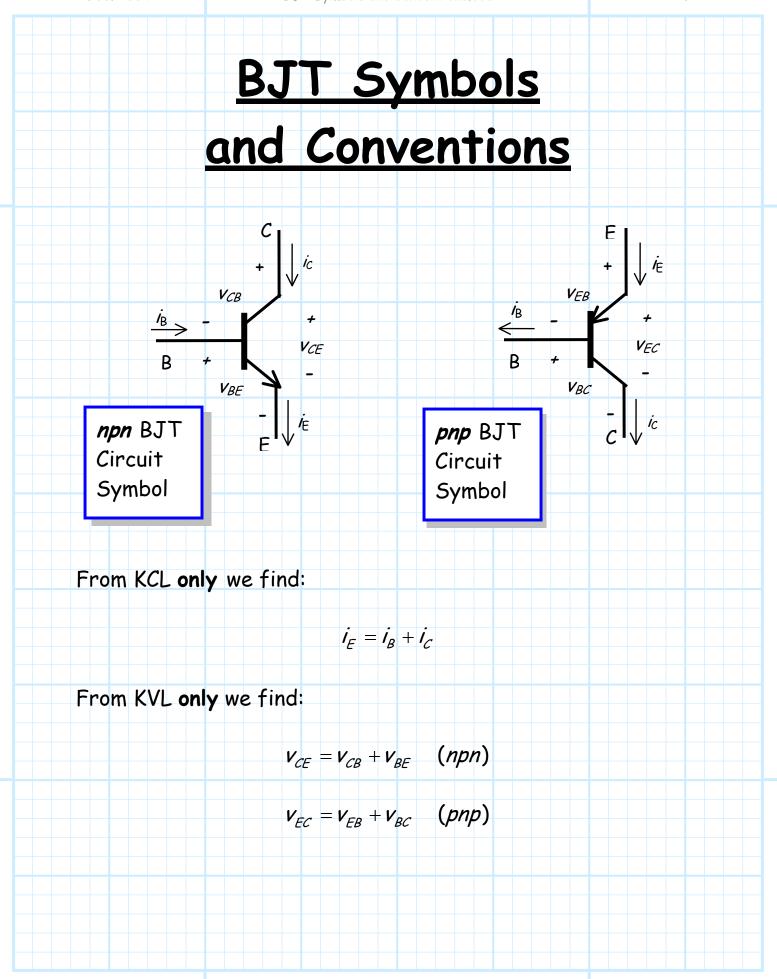
5-2 Current-Voltage

<u>Characteristics</u>

Reading Assignment: pp. 392 - 402

We will find that BJTs are in <u>many</u> was similar and analogous to MOSFETs!

For example, we will find:


BJT		MOSFET	
Base	is analogous to	Gate	
Collector	N	Drain	
Emitter	N	Source	
Cutoff	N	Cutoff	
Saturation	N	Triode	
Active	* S	Saturation	
ic		i _D	
VBE		VGS	
VDS		VCE	

<u>Look</u> for these analogies to help you understand BJTs!

HO: BJT Symbols and Conventions

HO: A Mathematical Description of BJT Behavior

Note that:

* The circuit symbols are very similar to MOSFETs, with npn like N-MOS and pnp like P-MOS.

* Positive current is defined in opposite directions for *npn* and for *pnp* (just like N-MOS and PMOS!).

* The voltages are of opposite polarity for *npn* and *pnp*. Specifically, for *npn* we use v_{BE} , v_{CE} and v_{CB} , whereas for *pnp* we use v_{EB} , v_{EC} and v_{BC} . This convention typically results in **positive** voltage values for **both** *npn* and *pnp* (unlike the MOSFET convention!).

* The **base current** i_B is **not** equal to zero, therefore $i_E \neq i_C$ (unlike MOSFETS)!

<u>A Mathematical</u> <u>Description of</u> <u>BJT Behavior</u>

Now that we understand the **physical** behavior of a BJT—that is, the behavior for each of the three BJT **modes** (active, saturation, and cutoff)—we need to determine also the **mathematical** description of BJT behavior.

We will find that BJT behavior is in many was **similar** to MOSFET behavior!

ACTIVE MODE

We found earlier that forward biasing the **emitter-base** junction (EBJ) results in **collector** (drift) current. The junction voltage for the EBJ is v_{BE} (for npn).

Thus, in active mode, the voltage **base**-to-**emitter** v_{BE} controls the **collector** current i_{C} . Specifically, we find that:

$$i_{c} = I_{s} e^{v_{BE}/V_{T}} (npn)$$

$$i_{\mathcal{C}} = I_{\mathcal{S}} e^{\frac{v_{EB}}{V_{T}}} (pnp)$$

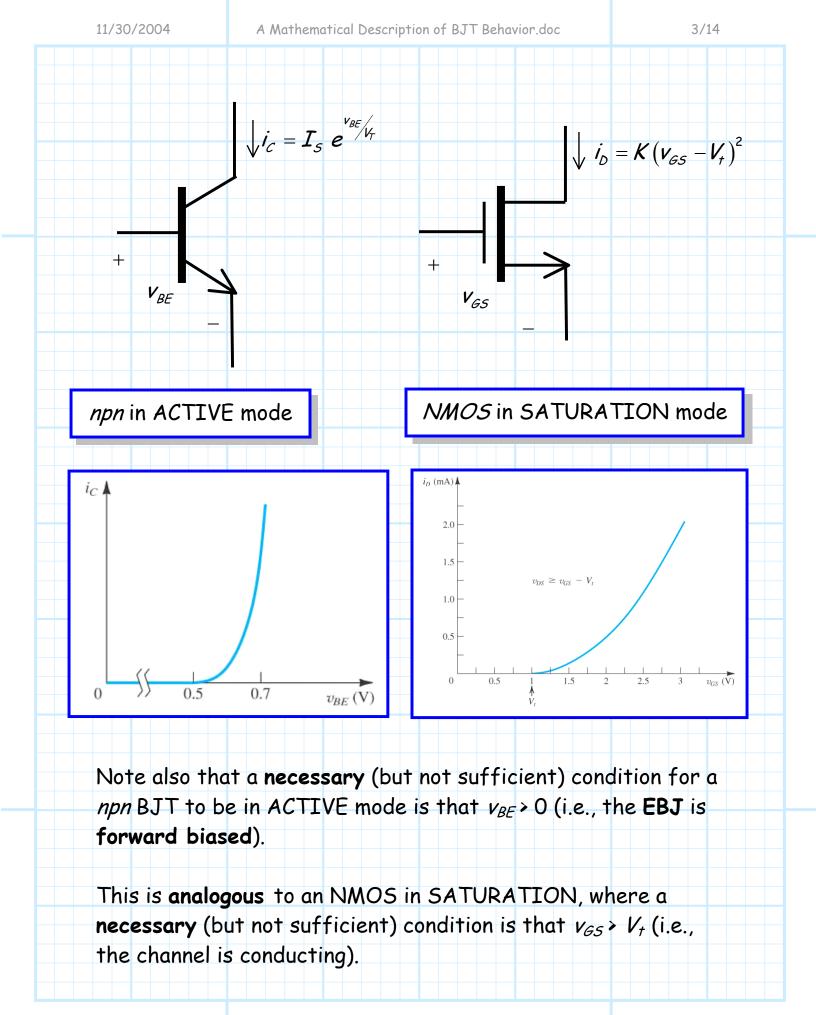
Jim Stiles

Here we should note two things:

1. The active mode equation is very **similar** to the p-n junction diode equation.

No surprise here! The collector current is directly proportional to the **diffusion** current across the EBJ. That's why the equation is just like the diffusion current equation for a *pn* junction.

In fact, I_S is scale current (a device parameter), and V_T is the **thermal voltage** (25 mV)—the same values used to describe junction diodes!


2. A BJT in ACTIVE mode is **analogous** to a MOSFET in SATURATION mode.

Recall that for a MOSFET in SATURATION, the drain current i_D is "controlled" by the gate-to-source voltage v_{GS} .

Likewise, for a BJT in ACTIVE mode, the collector current i_{C} is "controlled" by the base-to-emitter voltage v_{BE} .

Note the analogies!

i _D	analogous	to	i _c	
V _{BE}	analogous	to	V _{GS}	
ACTIVE	analogous	to	SATURATION	

Likewise, for a BJT to be in the ACTIVE mode, the **CBJ** must be in **reverse bias** (i.e, v_{BC} <0). Assuming that the forward biased EBJ results in $v_{BE} \approx 0.7 \text{ V}$, we can use **KVL** to determine that the CBJ will be reverse biased only when:

 $v_{CE} > 0.7 V$ for *npn* in ACTIVE

 $v_{EC} > 0.7 V$ for *pnp* in ACTIVE

These statements above are **analogous** to the MOSFET inequality $v_{DS} > v_{GS} - V_{f}$ for MOSFET SAT. (more on this later!).

Now, we are tempted to make **another analogy** between base **current** i_B and gate **current** i_G , but here the analogies **end**!

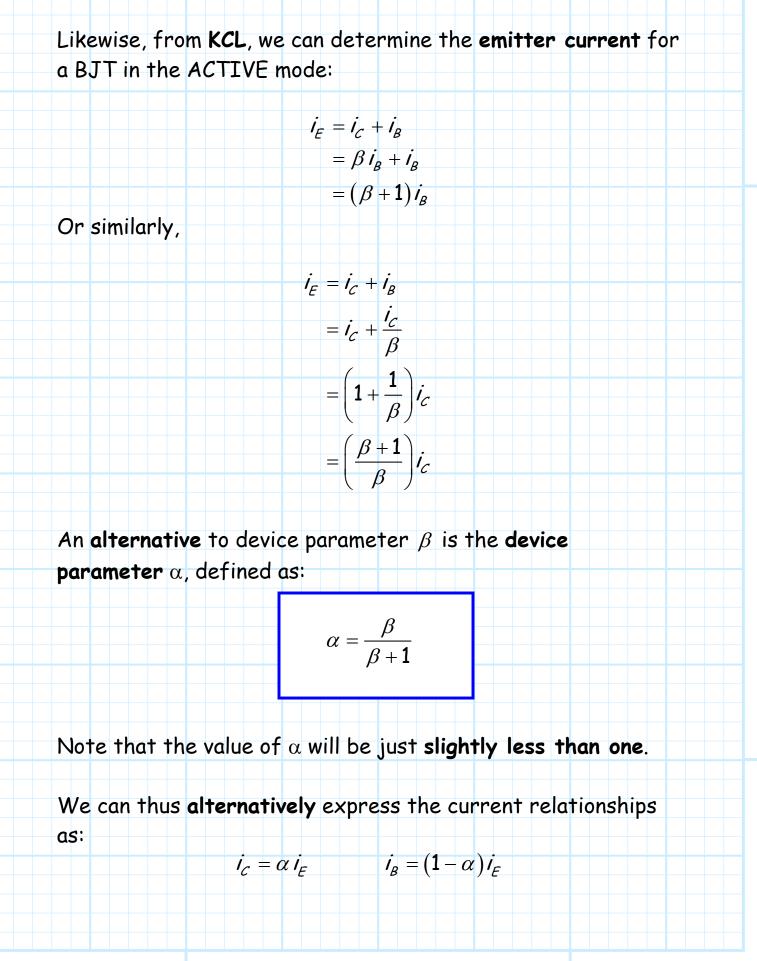
Recall $i_{\mathcal{G}}=0$ always, but for BJTs we find that $i_{\mathcal{B}}$ is not equal to zero (generally).

Instead, we found that although **most** of the charge carriers (e.g., holes or free electrons) diffusing across the EBJ end up "**drifting**" across the CBJ into the **collector**, **some** charge carriers do "exit" the **base** terminal.

Recall, however, that for every **one** charge carrier that leaves the **base** terminal, there are typically **50 to 250** (depending on the BJT) charge carriers that drift into the collector.

As a result, the **collector current** for ACTIVE mode is typically 50 to 250 times **larger** than the **base current**! I.E.:

$$50 < \frac{l_c}{l_B} < 250$$
 typically, for BJT ACTIVE


The precise value of this ratio is the device parameter β (beta):

$$\beta \doteq \frac{i_c}{i_B}$$
 for BJT ACTIVE mode

Thus, we find that the **base current** can be expressed as:

$$i_{B} = \frac{i_{C}}{\beta} = \frac{I_{S}}{\beta} e^{V_{BE}/V_{T}}$$
 (npn)

 $i_{B} = \frac{i_{C}}{\beta} = \frac{I_{S}}{\beta} e^{v_{EB}/v_{T}} (pnp)$

 $i_{E} = \frac{i_{C}}{\alpha} = \frac{I_{S}}{\alpha} e^{V_{BE}/V_{T}}$ (npn) $i_{E} = \frac{i_{C}}{\alpha} = \frac{I_{S}}{\alpha} e^{V_{EB}/V_{T}} \quad (pnp)$

Recall that the **exponential** expression for a *pn* junction turned out to be of **limited** use, as it typically led to unsolvable **transcendental** equations.

The **same** is true for **these** exponential equations! We will thus generally use the equations below to **approximate** the behavior of a BJT in the ACTIVE mode:

$$v_{BE} \approx 0.7$$
 $i_{C} = \beta i_{B}$ $v_{CE} > 0.7$ (*npn* in ACTIVE)

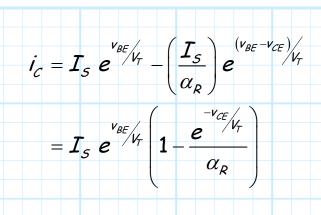
 $v_{EB} \approx 0.7$ $i_{C} = \beta i_{B}$ $v_{EC} > 0.7$ (pnp in ACTIVE)

SATURATION MODE

Recall for BJT SATURATION mode that **both** the CBJ and the EBJ are **forward biased**.

Thus, the collector current is due to **two** physical mechanisms, the **first** being charge carriers (holes or free-electrons) that **drift** across the CBJ (just like ACTIVE mode), and the **second** being charge carriers that **diffuse** across the forward biased CBJ!

As a result, a **second term** appears in our mathematical description of **collector current** (when the BJT is in SATURATION):


$$i_{\mathcal{C}} = \mathbf{I}_{\mathcal{S}} \mathbf{e}^{\mathbf{v}_{\mathcal{B}\mathcal{E}}} \mathbf{v}_{\mathcal{T}} - \left(\frac{\mathbf{I}_{\mathcal{S}}}{\alpha_{\mathcal{R}}}\right) \mathbf{e}^{\mathbf{v}_{\mathcal{B}\mathcal{C}}} \mathbf{v}_{\mathcal{T}} \quad (npn)$$

$$i_{\mathcal{C}} = \mathbf{I}_{\mathcal{S}} \mathbf{e}^{\mathbf{v}_{\mathcal{E}\mathcal{B}}} \mathbf{v}_{\mathcal{T}} - \left(\frac{\mathbf{I}_{\mathcal{S}}}{\alpha_{\mathcal{R}}}\right) \mathbf{e}^{\mathbf{v}_{\mathcal{C}\mathcal{B}}} \mathbf{v}_{\mathcal{T}} \quad (pnp)$$

where α_{R} represents the **same** device parameter α discussed earlier (for ACTIVE mode), with the only difference that it specifies the value of α specifically for the **CBJ**.

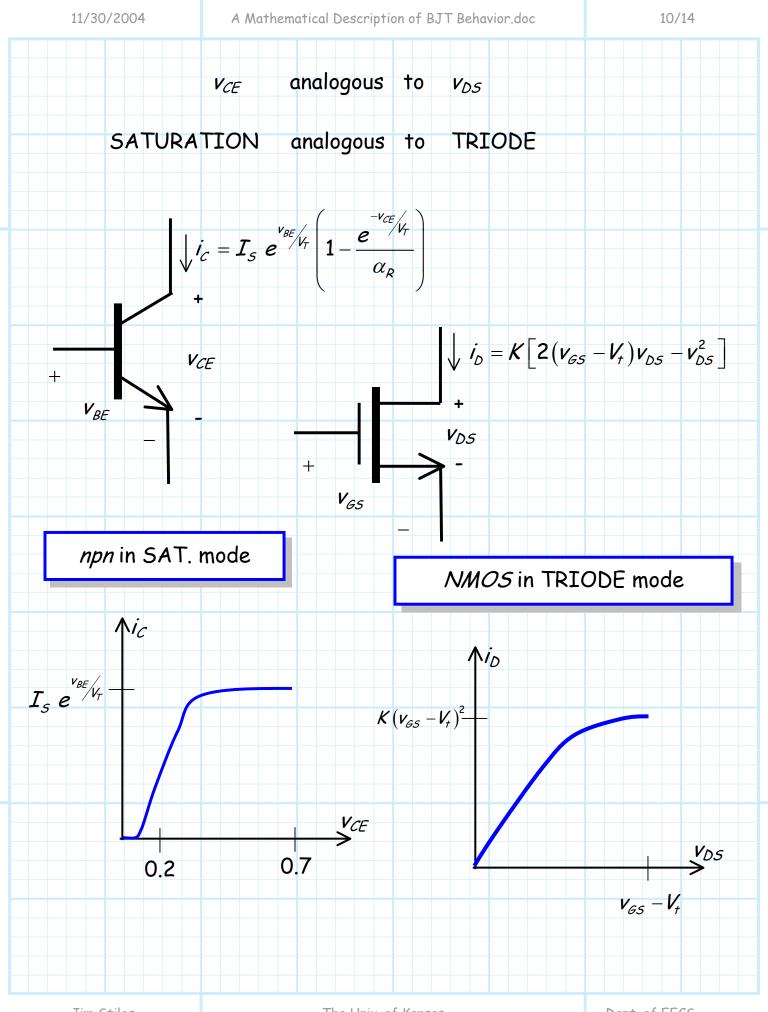
This second term describes the current due to **diffusion** across the CBJ. Note that this current is in the **opposite** direction of the drift current (the first term), hence the **minus** sign in the second term.

Now using **KVL** (i.e., $v_{CE} = v_{CB} + v_{BE}$), we can write this collector current equation as:

Thus, we can conclude:

$$\dot{v}_{c} = I_{s} e^{\frac{v_{BE}}{V_{T}}} \left(1 - \frac{e^{-v_{CE}}}{\alpha_{R}} \right)$$

for *npn* in SAT.


$$\dot{v}_{c} = I_{S} e^{\frac{v_{EB}}{V_{T}}} \left(1 - \frac{e^{-v_{EC}}}{\alpha_{R}}\right)$$

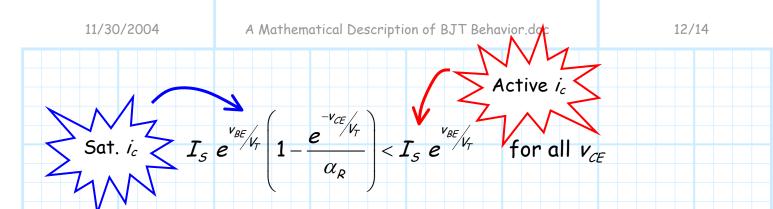
for *pnp* in SAT.

It is thus clear that for a BJT in SATURATION, the collector current i_c is dependent on **both** v_{BE} and v_{CE} .

This is precisely **analogous** to the TRIODE mode for MOSFETS!

Recall for **triode** mode, drain current i_D is dependent on both v_{GS} and v_{DS} . We thus have discovered **two** new analogies:

11/14


Now, a BJT is in SATURATION mode if both the CBJ and the EBJ are forward biased. Assuming that $v_{BF} \approx 0.7 V$ if the EBJ is forward biased, the CBJ voltage v_{BC} will be positive only if (using KVL): $V_{RC} > 0$ $v_{BF} - v_{CF} > 0$ $0.7 - v_{CF} > 0$ $v_{CF} < 0.7$ Thus, we can conclude that a **necessary** (but not sufficient) condition for a BJT to be in SATURATION is: $v_{CF} < 0.7$ for *npn* in SAT. $v_{FC} < 0.7$ for *pnp* in SAT.

These inequalities are **analogous** to the MOSFET inequalities:

 $v_{DS} < v_{GS} - V_t$ for NMOS in Triode

 $v_{DS} > v_{GS} - V_t$ for PMOS in Triode

Now, we note for the BJT SATURATION mode that the collector current will always be less that that in ACTIVE mode with the same value of v_{BE} :

Thus, we can **equivalently** state that the collector current in SATURATION will be less than the value βi_{β} :

 $i_{\mathcal{C}} < \beta i_{\beta}$ for BJT in SAT.

This of course means that the **base** current in SAT. is greater than i_c/β (i.e., the base current in active):

$$i_{B} > \frac{l_{C}}{\beta}$$
 for BJT in SAT.

Likewise, this means that:

$$i_{\mathcal{E}} < (\beta + 1)i_{\mathcal{B}}$$
 and $i_{\mathcal{C}} < \alpha i_{\mathcal{E}}$ for BJT in SAT.

But remember KCL is still valid for BJTs in SATURATION (it's always valid!):

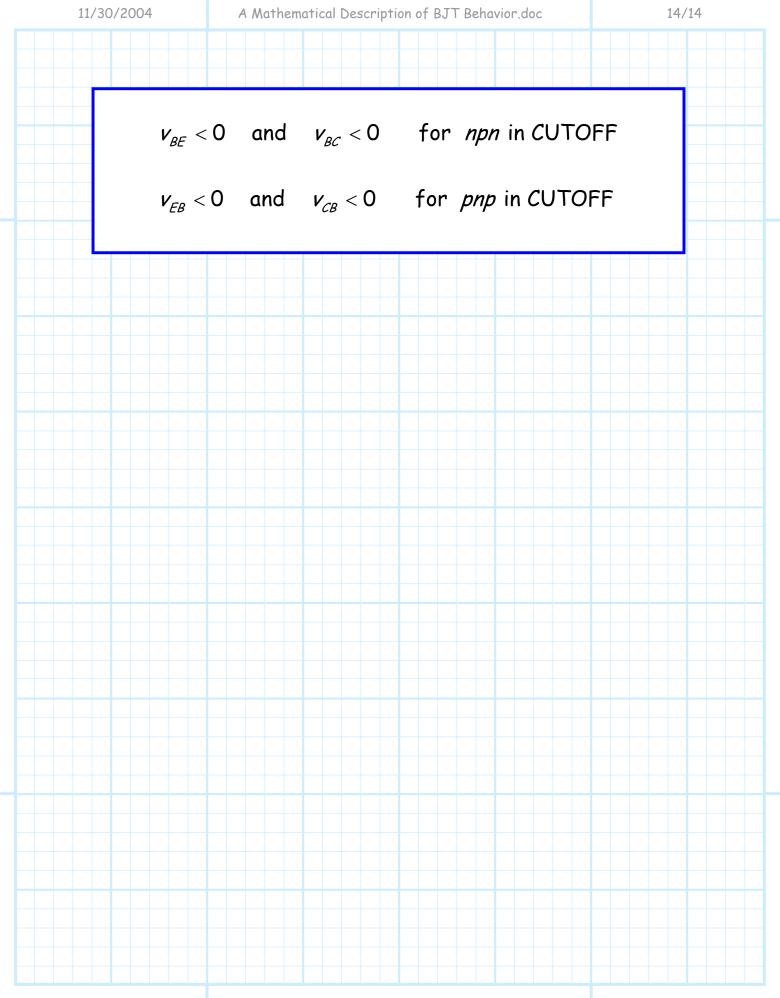
$$i_E = i_B + i_C$$
 (KCL)

Finally, we should again note that the **exponential** equations presented for SATURATION mode are **not** particularly useful for analyzing BJT circuits (that **transcendental** equation thing again!).

Thus, we describe a BJT in SATURATION with some **approximate** equations. Since both CBJ and EBJ are forward biased, we assume that $v_{BE} \approx 0.7V$ and that $v_{BC} \approx 0.5V$, resulting in the following **approximate** description for a BJT in SATURATION:

 $v_{BE} \approx 0.7 \, \text{V}$ $v_{CE} \approx 0.2 \, \text{V}$ $i_{C} < \beta i_{B}$ for *npn* in SAT.

 $v_{EB} \approx 0.7 \, \text{V}$ $v_{EC} \approx 0.2 \, \text{V}$ $i_{C} < \beta i_{B}$ for *pnp* in SAT.


CUTOFF MODE

Cutoff mode for BJTs is obviously **analogous** to cutoff mode for MOSFETS.

In both cases the transistor currents are **zero**!

$$i_{\mathcal{E}} = i_{\mathcal{B}} = i_{\mathcal{C}} = 0$$
 for BJTs in CUTOFF

Note that a BJT is in cutoff if **both** EBJ and CBJ are in **reverse bias**. This is true if:

